
Topics in Economics, Business and Management (EBM) 1(1) (2017) 320 -324 

Cite the article: Łukasz Sobaszek, Arkadiusz Gola And Edward Kozłowski (2017). Effect Of Machine Failure Prediction On Select ed Parameters Of Manufacturing Schedule In 
A Job-Shop Environment , Topics in Economics, Business and Management, 1(1) :320 -324. 

  ARTICLE DETAILS 

 Article History: 

Received 02 october 2017  
Accepted 06 october 2017  
Available online 11 october 2017 

Keywords: 

machine failure, prediction, 
robust scheduling, job shop 
scheduling, operational 
management.

ABSTRACT 

Production scheduling involves a number of factors, which may disrupt or completely block the smooth operation of 
a production processes. This paper seeks to address one of the key factors involved, machine failure, which is capable 
of introducing disorganisation and nervousness into production. The relevance of machine failure to production is 
highlighted by the extensive research in the field of robust scheduling, as a method to absorb potential disruptions. 
The aim of this paper is to present technological machine failure prediction method to provide the base for a robust 
schedule, which is subsequently verified by the mathematical model. Furthermore, the paper elaborates on the issue 
of scheduling in job shop environment and the idea of robust scheduling.

1. Introduction

Job scheduling in typical manufacturing systems is the subject of 
numerous analyses and research works. The research is predominantly 
focused on scheduling problems in job-shop environments due to the fact 
that this is the most popular and widely applied method of organising 
work in production companies [1]. A problem with much of the literature 
regarding job scheduling is that the work is frequently based on a set of 
simplifications, which determine that the character of such analyses is 
largely theoretical [2]. Consequently, a number of problems existing in an 
actual scheduling of manufacturing processes are disregarded. Practice 
shows that each production process involves a series of factors that are 
counter-productive to the realisation of the process itself [3]. One problem 
that should not be underestimated, as it shows great potential for 
disrupting production, is machine failure [4]. 

This paper takes a new look on robust scheduling of manufacturing jobs. 
The scope of the analysis included technological machine failure 
prediction and estimation of service times. The data for simulation was 
obtained from historical records from the Maintenance Department of a 
production company. 

2. Job-shop production systems 

2.1 Job shop environment characteristics 

In order to model a job-shop scheduling problem the following sets must 
be defined [5,6]: 

– M, which is a set of m machines processing the jobs:
–

},...,,{
21 m

MMMM  ,  (1) 

– J, which is a set of n jobs to be processed:
–

},...,,{
21 n

JJJJ  .  (2) 

Processing job Ji on machine Mj will be referred to as operation. Therefore what  

must be defined is [5,6]: 

– matrix of machine orders MO of the size m  n representing the 
rank of jobs on particular machines (machine routes): 
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where: oij – a number describing the rank of operations i on machine j 
taking the following values:  
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when operation i is not processed on machine 
j 
when operation i is processed on machine j 

where: m – the number of machines processing jobs. 

– The matrix of processing times PT: 
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where: pij – the number describing the processing time of job i on machine 
j; where: 

.0
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
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ij

The rudimentary problem of job scheduling consists in proper assignment 
of jobs from set J among given machines of set M. Scheduling in a job shop 
environment assumes full scheduling of jobs under technological 
constraints [7]. 

It is moreover of certain importance that the developed schedule should 
be optimal regarding the objective function [6]. There are several objective 
functions, however, in practice the one that is most widely applied (both in 
analysis of test problems and scheduling in industrial environment)  
is “minimise the makespan” (Cmax) [8,9]. 

An example of a schedule of manufacturing processes in job-shop environment 
is presented in Fig. 1. 

Figure 1. An example of a schedule in a job shop environment 

2.2 Limitations of job-shop system 

Literature in the field of job shop scheduling is mainly concerned with 
theoretical solutions [6,10,11]. This is a consequence of the solutions being 
still based on the classic set of simplifications [2]: 

1. No two tasks of the same job can be scheduled in parallel. 
2. Each machine is capable of carrying out one task at a time.
3. Each job has a limited number of operations of one per machine.
4. Each task is processed completely.
5. Task processing time can be entered manually.
6. Waiting time between two successive operations is allowed. 
7. There are no two identical machines.
8. Machines can be idle. Machines perform one task at a time.
9. No machine failure. Machines are available throughout the

whole manufacturing process. 
10. All technological constraints are known and fixed. No variation 

is allowed. 
11. No alternative process plans are allowed.

To a certain extent these assumptions are consistent with actual industrial 
conditions, however, several of these are against common practice. This 
concerns for instance assumption 9, “no machine failure,” which is by no 
means a possible scenario in industrial conditions. Failure is inherent in 
the work of any machine, and practice shows that defects will eventually 
occur; that is why, an increasing amount of research work is done into 
diminishing theoretical constraints of job-shop problems. Literature 
shows several research trends, which seem to confirm those tendencies, 
e.g.: 

– job shop scheduling with alternative process plans – allowing for 
variation in technology constraint [12], 

– flexible job-shop scheduling problem – concerned with job 
scheduling in flexible production systems [13], 

– job shop scheduling with deteriorating jobs problem – accounting 
for the deterioration of working conditions over time [14], 

– job shop scheduling under uncertainty – the trend which is focused 
on scheduling in an actual production environment; often 
referred to as robust scheduling [15,16]. 

2.3 Robust scheduling 

Robust scheduling of manufacturing jobs is a process taking into account 
variability of parameters of the production system, which produces a 
schedule characterised by its capability of absorbing disruptions [17,18]. 
The schedule is developed to counteract instability and nervousness 
connected with machine failure and randomness in production processes. 

Robust scheduling is a combination of two methods for scheduling under 
uncertainty [4,9]: 

1. Predictive scheduling (off-line scheduling phase), belonging to the 
planning stage of the process, which is when the following 
schedules are developed: 

─ nominal schedule – based on actual parameters of a system, 
─ robust schedule – taking into account uncertainty and flexibility 

of the executed process. 

2. Reactive scheduling, which pertains to the execution stage and is 
referred to as on-line scheduling phase. The schedule is created 
or modified in production (any change of the process results in 
implementation of an alternative schedule). 

Most common techniques of creating robust schedules include: 
redundancy-based techniques, conditional scheduling, creating partially 
ordered schedules, schedule sensitivity analysis [19]. 

In the next section we propose a new approach to predictive scheduling of 
manufacturing jobs with the implementation of selected prediction 
techniques. The suggested solution is designed to account for potential 
failure of the stock of machine tools by means of implementing redundant 
service times. 

3. Proposed machine failure prediction method 

3.1 Survival analysis as a tool for machine failure prediction 

Prediction of selected uncertainty factors requires application of proper 
tools. The proposed solution makes use of elements of survival analysis, 
also referred to as survival time analysis. 

Let T be a non-negative random variable with probability density function 
f(t), t > 0 and cumulative distribution function 

).()( tTPtF   (5) 

Bellow we assume, that the random variable T represents the waiting time 
until the failure (death of plant). In literature the variable T is called a 
survival time [21]. The value F(t) determines the probability that the 
failure (defect) has occurred by duration. The survival function 
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presents the probability of correct work of device just before duration t 
(the probability of surviving to duration t), generally the probability that 
the failure (defect) has not occurred by duration t. The survival 
characteristic of device may be presented by a hazard function 
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The value of this function represents an instantaneous rate of occurrence 
of failure [19]. From (6) the formula (7) we may rewrite as 

   tS
dt

d
th ln (8) 

By solving the expression (8) we obtain a formula for survival function 

    tHtS  exp   (9) 

where 
   

t

dsshtH

0

is called a cumulative hazard function. The 

cumulative hazard function represents the sum of risks occurring from 
duration 0 to t [20]. 

3.2 Determination of time-to-failure 

To determine time-to-failure, our solution employs the survival function 
S(t), derived from the Kaplan-Meier estimation, which is among 
techniques used in the field of survival analysis [20]. For the sake of 
analysis, the time-between-failures of machines was obtained from 
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historical data, collected by the Maintenance Department of a production 
company. Such records are used inter alia in determining MTBF factor 
(Mean Time Between Failures). Statistical analysis of this data allows an 
engineer to determine frequently occurring time periods between 
machine failures. The resulting plot of horizontal steps may be used to 
estimate the chance of survival of a given machine (continuous survival 
time of machine) in defined periods (Fig. 2). 

Figure 2. Survival function estimated with the Kaplan-Meier method 

Time-to-failure prediction algorithm in the proposed solution consists of 
the following steps: 

Step 1. Determining empirical time between failures. 
Step 2. Determining the character and parameters of analysed 

data with the box plot (minimal and maximal values, 
scatter, upper and lower quantiles). 

Step 3. Identifying periods of highest machine failure intensity 
Step 4. Employing Kaplan-Meier estimator to determine the 

probability p of uninterrupted processing 

The process of data analysis presented above serves to pinpoint places 
where disruptions in the schedule could occur, whereas obtained 
probability p will be applicable in implementing service times in the 
schedule. 

3.3 Estimating the size of service times 

It is critical for robust scheduling of jobs with redundant service times to 
determine their size. These may be derived from historical data, which 
indicate most frequent machine service times after failure. Fig. 3 shows an 
example of how a histogram may be used to determine the size of service 
times: first, the service times are extracted from the whole set of data, 
subsequently ensues a detailed analysis of machine repair times from the 
set of the highest number of machine failure incidences. 

Figure 3. Historiograms of machine repair times 

Given the potential failure time t and probability p, the rule for the 
estimation of service times may take the following form: 

IF p < 0.8 and p > 0.6 
then minimal service buffer 

ELSEIF p < 0.6 and p > 0.4 
then medium service buffer 

ELSEIF p < 0.4 
then maximal service buffer 

END 

4. Computational example 

4.1 Model constraints 

In order to verify the proposed solution, a computational example was 
analysed. The constraints used in the model are presented below. 

Production consists of 8 elements (jobs) of defined machine route in the 
stock of technological machines composed of 10 work stations in 
technological lay-out. Each element is a separate product, hence any job 
release and due dates are arbitrary. Elements are produced in batches of 
75 pieces.  

The production must be processed in the shortest possible time. 

It was furthermore assumed that the manufacturing process may be 
subject to disruptions in the form of technological machine failure, which 
may occur on 5 machines of the heaviest workload. Failure prediction was 
based on analysis of historical data from a production company and 
calculated by means of the presented solution. 

4.2 Job scheduling method 

The selection of a suitable scheduling method is critical to scheduling 
manufacturing processes. The presented solution employs heuristic 
algorithm of dispatching rules. The method schedules jobs on particular 
machines (groups of machines) based on certain priority rules, according 
to which subsequent operations are chosen. There are several advantages 
of the method: quick solution, analysis of alternative scheduling scenarios 
or easy implementation of the method [22,23]. 

In the presented study, the following priority rules were employed: 
1. LPT – Longest Processing Time, 
2. SPT – Shortest Processing Time, 
3. FCFS – First Come First Service, 
4. EDD – Earliest Due Date,
5. RAND – Random. 

4.2 Criteria 

Both nominal and robust schedules must undergo evaluation. In the 
presented case the regular criteria for the evaluation of schedules are 
[19,24,25]: 

1. Make-span, total production time Cmax – the time when all the
jobs end. 

2. Job completion time Ci and mean completion time of job C –
the time of completion of a given job Ji and mean time of job 
completion, which is an arithmetic mean of all job completion 
times. 

3. Extend – indicator based on the values of effectiveness criteria 
(e.g. Cmax, Ci) applied in reactive scheduling, although equally 
suitable in describing predictive schedule, for instance – to 
establish the maximum make-span of all jobs Cmax, we make use of 
the relationship: 

max

max

'C

C
(10) 

where: Cmax, C′max – make-span of a nominal and robust schedule. 

4. Number of critical operations – indicator used in evaluation of 
predictive schedules, defined as: 

i j ijy ,  (11) 
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for (tzi – tri+1) ≠ 0 

where: tzi – due time of operation i (current). 
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tri+1 – release date of operation i+1 (subsequent). 
An operation is therefore referred to as critical when there is no 
machine idle time between operations, as the risk of delay is 
higher. 

5. Mean idle time between operations – obtained from: 

,
ti

i j ij

n

ti
(12) 

where: tiij – idle time preceding operation j of job i, 
nti – the number of idle times. 

4.3 Developing robust schedule 

The proposed solution was employed to conduct failure prediction of 5 
technological machines. The results obtained from the analysis showed 
that machine failure occurs at 8, 16, 25 or 32 hours  
of processing jobs. Given the processing of all jobs in the nominal schedule 
took on average approx. 27 h, only times within the given period were 
considered. The survival functions determined for each machine gave the 
probability of uninterrupted processing p. Based on the obtained data and 
the machine defect repair times the service times tsi were established. The 
results of analyses are collated in Table 1.  

Table 1. Service times of analysed machines 

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

p 
ts1 

[h] 
p 

ts2 

[h] 
p 

ts3 

[h] 
p 

ts4 

[h] 
p 

ts5 

[h] 
After 8 h 0.757 0.25 0.715 0.25 0.754 0.5 0.592 0.5 0.684 0.25 

After 16 h 0.549 0.5 0.515 0.5 0.566 0.5 0.401 0.5 0.481 0.5 

The obtained data provided information necessary for building a robust 
schedule by implementing service times where machine failure might 
occur. Buffer times were scheduled on machines M1, M4, M 5, M 9 and M10, 
and the scheduling algorithm took the following form: 

IF there is a free spot in nominal schedule, put service time tsi 
ELSEIF operation is scheduled in service time target spot in nominal 
schedule check condition: 

IF inserting time service does not affect objective function 
schedule tsi in target spot and move operations to the 

right 
ELSE 

schedule service time tsi after completed operation 
END 

END 

4.3 Results and discussion 

By implementing the above instructions we obtain the nominal and the 
robust schedule. 

The objective functions for both schedules are presented in Table 2, where 
it can be seen that different dispatching rules produced different values of 
objective function and parameters in question.  

LPT dispatching rule produced the longest make-span. In the case of FCFS 
and EDD the objective function was average, whereas the shortest make-
span resulted from the implementation of SPT rule, which led us to a 
conclusion that the robust schedule should not include service times after 
16 h of the preceding failure. Similarly positive results were obtained when 
RAND rule was employed, however, it is difficult to predict what the result 
would be if the random algorithm were to be run again. 

The comparison of objective functions in the nominal and the robust 
schedules indicates that prediction of machine failure and scheduling 
service times does not overburden the Cmax parameter (longer by a 
maximum of 0.75 h), and in the case of one method the objective function 
value is even better (the make-span is shortened by 0.6 h). This can also be 
observed in the relation of Cmax and C′max, which takes the value of 1 in each 
analysed case, hence the schedules are broadly similar to each other.

 Table 2. Obtained values of objective function Cmax 

Dispatching 
rules 

Nominal 
schedule  
Cmax [h] 

Robust 
schedule  
C′max [h] 

Extend 

max

max

'C

C Difference 
Cmax – C′max [h] 

LPT 30.88 31.38 0.97 0.5 

SPT 22.09 22.84 0.97 0.75 
FCFS 25.78 26.53 0.97 0.75 

EDD 25.78 26.53 0.97 0.75 
RAND 25.45 24.85 1.02 -0.6

Since the Cmax obtained from EDD rule was on average level among other 
rules, it was resolved that the remaining parameters (Table 3, Table 4 and 
Table 5) will be established from the same rule. 

It should be noted that, on average, due times of particular jobs in the 
robust schedule are longer by 0.83 h, however, this improves the 
robustness of the schedule by ensuring that no loss of performance occurs 
in the presence of disruption – in 5 out of 8 processed jobs the number of 
critical operations was reduced (Table 4). What is more, analysis of idle 
times (Table 5) proves that in the majority of cases service times were 
implemented in machine idle times, therefore utilising the time when the 
machine does not process any jobs. It was only in the case of M3 that the 
make-span was bigger. 

Table 3. Obtained due dates of jobs 

Value of Ci 

C1 C2 C3 C4 C5 C6 C7 C8 C
Nominal 
schedule 

3.7
1 

20.3
3 

10.5
5 

14.5
7 

21.3
8 

19.3
3 

25.7
8 

13.4
5 

16.1
4 

Robust 
schedule 

3.7
1 

21.3
5 

12.3
3 

15.3
0 

22.4
0 

20.3
5 

26.0
3 

14.2
5 

16.9
7 

Table 4. The number of critical operations in nominal and robust 
schedule 

Number of critical operations 

J1 J2 J 3 J 4 J 5 J 6 J 7 J 8 J

Nominal schedule 1 2 2 3 2 4 4 5 3 

Robust schedule 1 1 2 1 2 3 3 4 2 

Table 5. Average idle time of machines 

Average idle time of machines 

M1 M2 M 3 M 4 M 5 M

Nominal schedule 
0.00 3.15 3.66 2.52 4.04 2.67 

Robust schedule 0.00 3.15 6.00 2.20 4.25 3.12 

The schedule developed in the form of Gantt chart is show in Fig. 4. Service 
times are red fields with bold frame. 

Figure 4. Developed manufacturing process schedule 

6. Summary 
Scheduling jobs in manufacturing processes is of great assistance to 
production management. 

The available methods and techniques must, however, be developed in 
order to embrace an increasing number of factors, and to give a more 
actual representation of existing production systems.  
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The presented research work aimed at showing that the development of a 
robust schedule with the implementation of service times is feasible given 
that slight adjustments to the manufacturing process schedule parameters 
are introduced. Future work should concentrate on optimisation of the 
developed nominal schedule so that it would bear high resemblance to the 
robust schedule. It is furthermore recommended that simulation research 
should be carried out with a view to further validation of the proposed 
solution. 
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